Gauge equivalence of Dirac structures and symplectic groupoids
نویسنده
چکیده
We study gauge transformations of Dirac structures and the relationship between gauge and Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a symplectic groupoid is affected by a gauge transformation of the Poisson structure on its identity section, and prove that gauge-equivalent integrable Poisson structures are Morita equivalent. As an example, we study certain generic sets of Poisson structures on Riemann surfaces: we find complete gauge-equivalence invariants for such structures which, on the 2-sphere, yield a complete invariant of Morita equivalence.
منابع مشابه
Dirac structures and gauge symmetries of phase spaces
Several known constructions of phase spaces are merged into the framework of Poisson fiber bundles and coupling Dirac structures. Functorial properties of our construction are discussed and examples are provided. Finally, applications to fibered symplectic groupoids are given. Mathematics Subject Classification (2000): 53D17, 55Rxx, 57Rxx
متن کاملB.L. Davis and A. Wade DIRAC STRUCTURES AND GAUGE SYMMETRIES OF PHASE SPACES
We study the geometry of the phase space of a particle in a Yang-Mills-Higgs field in the context of the theory of Dirac structures. Several known constructions are merged into the framework of coupling Dirac structures. Functorial properties of our constructions are discussed and examples are provided. Finally, applications to fibered symplectic groupoids are given.
متن کاملDirac submanifolds and Poisson involutions
Dirac submanifolds are a natural generalization in the Poisson category for symplectic submanifolds of a symplectic manifold. In a certain sense they correspond to symplectic subgroupoids of the symplectic groupoid of the given Poisson manifold. In particular, Dirac submanifolds arise as the stable locus of a Poisson involution. In this paper, we provide a general study for these submanifolds i...
متن کاملRieeel Induction as Generalized Quantum Marsden-weinstein Reduction
A new approach to the quantization of constrained or otherwise reduced classical mechanical systems is proposed. On the classical side, the generalized symplectic reduction procedure of Mikami and Weinstein, as further extended by Xu in connection with symplectic equivalence bimodules and Morita equivalence of Poisson manifolds, is rewritten so as to avoid the use of symplectic groupoids, whose...
متن کاملRieffel induction as generalized quantum Marsden-Weinstein reduction
A new approach to the quantization of constrained or otherwise reduced classical mechanical systems is proposed. On the classical side, the generalized symplectic reduction procedure of Mikami and Weinstein, as further extended by Xu in connection with symplectic equivalence bimodules and Morita equivalence of Poisson manifolds, is rewritten so as to avoid the use of symplectic groupoids, whose...
متن کامل